

Cloud Computing: Obstacles & Opportunities

David Patterson, UC Berkeley
Reliable Adaptive Distributed Systems Lab

Outline

- What is Cloud Computing?
- What is new? Why has it happened now?
- Why good for users?
- Do cloud providers make money?
- Quick: Software as a Service / Cloud
 Computing in Education at UC Berkeley
- Quick: UC Berkeley RAD Lab Research Program in Cloud Computing
- Q&A

"Cloud computing is nothing (new)"

"...we've redefined Cloud Computing to include everything that we already do... I don't understand what we would do differently ... other than change the wording of some of our ads."

Larry Ellison, CEO, Oracle (Wall Street Journal, Sept. 26, 2008)

Above the Clouds: A Berkeley View of Cloud Computing

abovetheclouds.cs.berkeley.edu

- 2/09 White paper by RAD Lab PI's and students
 - Shorter version: "A View of Cloud Computing," Communications of the ACM, April 2010
 - Clarify terminology around Cloud Computing
 - Quantify comparison with conventional computing
 - Identify Cloud Computing challenges & opportunities
 - 60,000+ downloads of paper!
- Why can we offer new perspective?
 - Strong engagement with industry
 - Using cloud computing in research, teaching since 2008
- Goal: stimulate discussion on what's really new 4

Utility Computing Arrives

- Amazon Elastic Compute Cloud (EC2)
- "Compute unit" rental: \$0.08-0.64/hr.
 - 1 CU ≈ 1.0-1.2 GHz 2007 AMD Opteron/Xeon core

"Instances"	Platform	Cores	Memory	Disk
Small - \$0.08 / hr	32-bit	1	1.7 GB	160 GB
Large - \$0.32 / hr	64-bit	4	7.5 GB	850 GB – 2 spindles
XLarge - \$0.64 / hr	64-bit	8	15.0 GB	1690 GB – 3 spindles

- No up-front cost, no contract, no minimum
- Billing rounded to nearest hour; pay-as-you-go storage also available
- A new paradigm (!) for deploying services?

What is it? What's new?

- Old idea: Software as a Service (SaaS)
 - Basic idea predates MULTICS (timesharing in 1960s)
 - Software hosted in the infrastructure vs. installed on local servers or desktops; dumb (but brawny) terminals
- New: pay-as-you-go utility computing
 - Illusion of infinite resources on demand
 - Fine-grained billing: release == don't pay
 - Earlier examples: Sun, Intel Computing Services—longer commitment, more \$\$\$/hour, no storage
 - Public (utility) vs. private clouds

Why Now (not then)?

- "The Web Space Race": Build-out of extremely large datacenters (10,000's of commodity PCs)
 - Build-out driven by growth in demand (more users)
 - => Infrastructure software: e.g., Google File System
 - => Operational expertise: failover, DDoS, firewalls...
 - Discovered economy of scale: 5-7x cheaper than provisioning a medium-sized (1000 servers) facility
- More pervasive broadband Internet
- Commoditization of HW & SW
 - Fast Virtualization
 - Standardized software stacks

Datacenter is the new Server

Utility computing: enabling innovation in new services without first building & capitalizing a large company.

The Million Server Datacenter

- 24000 sq. m housing 400 containers
 - Each container contains 2500 servers
 - Integrated computing, networking, power, cooling systems
- 300 MW supplied from two power substations situated on opposite sides of the datacenter
- Dual water-based cooling systems circulate cold water to containers, eliminating need for air conditioned rooms,

Classifying Clouds

- Instruction Set VM (Amazon EC2)
- Managed runtime VM (Microsoft Azure)
- Framework VM (Google AppEngine)
- Tradeoff: flexibility/portability vs. "built in" functionality

Cloud Economics 101

 Cloud Computing User: Static provisioning for peak - wasteful, but necessary for SLA

Risk of Under Utilization

Underutilization results if "peak" predictions are too optimistic

Static data center

Risks of Under Provisioning

New Scenarios Enabled by "Risk Transfer" to Cloud

- Not (just) Capital Expense vs. Operation Expense!
- "Cost associativity": 1,000 CPUs for 1 hour same price as 1 CPUs for 1,000 hours (@\$0.08/hour)
 - Grad students demonstrate new idea on 1,000 servers
- Major enabler for SaaS startups
 - Animoto traffic 2X every 12 hours for 3 days when released as Facebook plug-in (50 to >3500 servers)
 - FarmVille: 1M users @ 4 days; 10M @ 60 days;
 75M @ 270 days (28M daily users)
- Cloud gets IT gatekeepers out of the way
 - not unlike the PC revolution

Hybrid / Surge Computing

- Keep a local "private cloud" running same protocols as public cloud
- When need more, "surge" onto public cloud, and scale back when need fulfilled
- Saves capital expenditures by not buying and deploying power distribution, cooling, machines that are mostly idle

Do Cloud Providers Make \$?

- James Hamilton Blog (now at Amazon)
 - http://perspectives.mvdirona.com/2010/09/18/OverallDataCenterCosts.aspx
- CAPEX for IT Equipment (46k servers),
 Warehouse, Power Distribution, Cooling
 - \$80M for IT equip + \$88M for building, infrastructure
- OPEX via Amortization (3 years for IT equip.,
 10 years for warehouse) + Electricity Costs
 - \$3.6M/month => \$0.11/hour/server
- Closest AWS server is High CPU XL @ \$0.68/hr
- If sell 50% hours, gross margin of ~ 66%
 - Good margin for a service business

Energy & Cloud Computing?

- Cloud Computing saves Energy?
- Don't buy machines for local use that are often idle
- Better to ship bits as photons over fiber vs. ship electrons over transmission lines to convert via local power supplies to spin disks and power processors and memories
 - Clouds use nearby (hydroelectric) power
 - Leverage economies of scale of cooling, power distribution

- Techniques developed to stop using idle servers to save money in Cloud Computing can also be used to save power
 - Up to Cloud Computing Provider to decide what to do with idle resources
- New Requirement: Scale DOWN and up

Challenges & Opportunities

- "Top 10" Challenges to adoption, growth,
 & business/policy models for Cloud
 Computing
- Both technical and nontechnical
- Most translate to 1 or more opportunities
- Complete list in paper
- Paper also provides worked examples to quantify tradeoffs ("Should I move my service to the cloud?")

5 Growth Challenges

Challenge	Opportunity
Programming for large distributed systems	MapReduce for batch processing, Major research opportunity
Scalable structured storage	Major research opportunity
Scaling quickly	Invent Auto-Scaler that relies on Statistical Machine Learning
Performance unpredictability (I/O)	Improved Virtual Machine support, scheduling, flash memory
Data transfer bottlenecks	FedEx-ing disks, Data Backup/Archival

3 Adoption Challenges

Challenge	Opportunity
Availability / business continuity	Multiple providers & Multiple Data Centers
Data lock-in	Standardization
Data Confidentiality and Auditability	Encryption, VLANs, Firewalls; Geographical Data Storage

2 Policy and Business Challenges

Challenge	Opportunity
Reputation Fate Sharing	Offer reputation-guarding services like those for email
Software Licensing	Pay-as-you-go licenses; Bulk licenses

Outline

- What is Cloud Computing?
- What is new? Why has it happened now?
- Why good for users?
- Do cloud providers make money?
- Quick: Software as a Service / Cloud
 Computing in Education at UC Berkeley
- Quick: UC Berkeley RAD Lab Research Program in Cloud Computing
- Q&A

Quick Overview Education

- Web 2.0 SaaS is a great motivator for teaching software skills
 - students get to build artifacts they themselves use
 - some projects continue after course is over
 - opportunity to (re-)introduce "big ideas" in software development/architecture
- Cloud computing is great fit for courses
 - elasticity around project deadlines
 - easier administration of courseware
 - students can take work product with them after course

RAD Lab 5-year Mission

Enable 1 person to develop, deploy, operate next -generation Internet application

- Key enabling technology: Statistical machine learning
 - debugging, power management, performance prediction, ...
- Highly interdisciplinary faculty & students
 - Pl's: Fox/Katz/Patterson (systems/networks), Jordan (machine) learning), Stoica (networks & P2P), Joseph (systems/security), Franklin (databases)
 - 2 postdocs, ~30 PhD students, ~10 undergrads

Machine Learning & Systems

- Recurring theme: cutting-edge Statistical Machine Learning (SML) works where simpler methods have failed
 - Predict performance of complex software system when demand is scaled up
 - Automatically add/drop servers to fit demand, without violating Service Level Objective (SLO)
 - Distill millions of lines of log messages into an operator-friendly "decision tree" that pinpoints "unusual" incidents/conditions

Conclusion

- Cloud Computing will transform IT industry
 - Pay-as-you-go utility computing leveraging economies of scale of Cloud provider
 - Anyone can create/scale next eBay, Twitter...
- Transform academic research, education too
- Cloud Computing offers \$ for systems to scale down as well as up: save energy too
- RAD Lab addressing New Cloud Computing challenges